Upgrade & Secure Your Future with DevOps, SRE, DevSecOps, MLOps!

We spend hours on Instagram and YouTube and waste money on coffee and fast food, but won’t spend 30 minutes a day learning skills to boost our careers.
Master in DevOps, SRE, DevSecOps & MLOps!

Learn from Guru Rajesh Kumar and double your salary in just one year.

Get Started Now!

What Is Deep Learning AI? A Simple Guide With 8 Practical Examples

Source- forbes.com

There’s a lot of conversation lately about all the possibilities of machines learning to do things humans currently do in our factories, warehouses, offices and homes. While the technology is evolving—quickly—along with fears and excitement, terms such as artificial intelligence, machine learning and deep learning may leave you perplexed. I hope that this simple guide will help sort out the confusion around deep learning and that the 8 practical examples will help to clarify the actual use of deep learning technology today.

What is deep learning?

The field of artificial intelligence is essentially when machines can do tasks that typically require human intelligence. It encompasses machine learning, where machines can learn by experience and acquire skills without human involvement. Deep learning is a subset of machine learning where artificial neural networks, algorithms inspired by the human brain, learn from large amounts of data. Similarly to how we learn from experience, the deep learning algorithm would perform a task repeatedly, each time tweaking it a little to improve the outcome. We refer to ‘deep learning’ because the neural networks have various (deep) layers that enable learning. Just about any problem that requires “thought” to figure out is a problem deep learning can learn to solve.

The amount of data we generate every day is staggering—currently estimated at 2.6 quintillion bytes—and it’s the resource that makes deep learning possible. Since deep-learning algorithms require a ton of data to learn from, this increase in data creation is one reason that deep learning capabilities have grown in recent years. In addition to more data creation, deep learning algorithms benefit from the stronger computing power that’s available today as well as the proliferation of Artificial Intelligence (AI) as a Service. AI as a Service has given smaller organizations access to artificial intelligence technology and specifically the AI algorithms required for deep learning without a large initial investment.

 Deep learning allows machines to solve complex problems even when using a data set that is very diverse, unstructured and inter-connected. The more deep learning algorithms learn, the better they perform.

8 practical examples of deep learning

Now that we’re in a time when machines can learn to solve complex problems without human intervention, what exactly are the problems they are tackling? Here are just a few of the tasks that deep learning supports today and the list will just continue to grow as the algorithms continue to learn via the infusion of data.

Related Posts

Subscribe
Notify of
guest
1 Comment
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
1
0
Would love your thoughts, please comment.x
()
x
Artificial Intelligence